The polymerase chain reaction (PCR) has radically transformed biological science, allowing sophisticated analysis of genes and the genome. Revolutionizing the study of DNA, PCR is often hailed as one of the most important scientific advances of the 20th century. Over time, PCR has evolved into fluorescence-based quantitative real-time PCR (qPCR), which is now considered the molecular diagnostic technique of choice due to its capacity to detect and measure minute amounts of nucleic acids in a variety of samples from multiple sources.
Due to its practical simplicity, in combination with its outstanding capabilities, including speed, sensitivity, and specificity, qPCR plays a huge role in a number of applications, among them gene expression analysis, microRNA analysis, single nucleotide polymorphism genotyping, copy number variation analysis, and protein analysis.
The success and reputation of qPCR is reflected in the abundance of publications reporting qPCR data. Despite substantial advances in the accessibility and ease-of-use of qPCR for diagnostics, generating an assay that is capable of delivering reliable, reproducible, and meaningful results is still a challenging task.
Read more:
Improving Real-Time PCR Data Quality
Source: GEN Magazine Articles
No comments:
Post a Comment