Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications — chemical tags known as methyl groups — influence viral replication and the human immune response. The study is published October 20 by Cell Host & Microbe.
In human cells, RNA is the genetic material that carries instructions from the DNA in a cell’s nucleus out to the cytoplasm, where molecular machinery uses those instructions to build proteins. Cells can chemically modify RNA to influence protein production. One of these modifications is the addition of methyl groups to adenosine, one of the building blocks that make up RNA. Known as N6-methyladenosine (m6A), this modification is common in humans and other organisms.
In contrast to humans, the entire genomes of some viruses, including Zika and HIV, are made up of RNA instead of DNA. These viruses hijack the host’s cellular machinery to translate its RNA to proteins. Rana and his team previously discovered that m6A plays an important role in HIV infection.
Next, Rana and team will investigate the role of RNA modifications in
the viral life cycle, and how the human immune response is altered by
various Zika virus strains. They are also developing small molecules to
target specific RNA structures as a means to treat Zika virus
infections.
Read more:
Zika Virus Infection Alters Human and Viral RNA
Source: UCsan Diago Health
No comments:
Post a Comment