P values, the 'gold standard' of statistical validity, are not as reliable as many scientists assume.
For a brief moment in 2010, Matt Motyl was on the brink of scientific glory: he had discovered that extremists quite literally see the world in black and white.
The results were “plain as day”, recalls Motyl, a psychology PhD student at the University of Virginia in Charlottesville. Data from a study of nearly 2,000 people seemed to show that political moderates saw shades of grey more accurately than did either left-wing or right-wing extremists. “The hypothesis was sexy,” he says, “and the data provided clear support.” The P value, a common index for the strength of evidence, was 0.01 — usually interpreted as 'very significant'. Publication in a high-impact journal seemed within Motyl's grasp.
But then reality intervened. Sensitive to controversies over reproducibility, Motyl and his adviser, Brian Nosek, decided to replicate the study. With extra data, the P value came out as 0.59 — not even close to the conventional level of significance, 0.05. The effect had disappeared, and with it, Motyl's dreams of youthful fame.
Read more:
Scientific method: Statistical errors : Nature News & Comment
Source: Nature